Subtractive vs. Additive Manufacturing

Most traditional manufacturing is subtractive—cutting pattern pieces from a bolt of fabric, carving an object from a block of wood, or cutting out a piece from metal.

Additive manufacturing (also known as 3D printing) involves combining materials to create an object.
From Additive Prototyping to Additive Manufacturing

Was originally developed for use by engineers, architects and product designers as a method of rapid prototyping. It has evolved to include more substantial materials that make it a viable tool for rapid manufacturing, creating end use objects.

Selective Laser Sintering (SLS)

Carl Deckard invented Selective Laser Sintering (SLS) while studying in the The Department of Mechanical Engineering at University of Texas at Austin.

Selective Laser Sintering is the BINDING OF GRANULAR MATERIALS. It utilizes a laser to melt fine powders into 3D shapes. Common materials include nylon, metal, and elastomer polymers.
1984 - Chuck Hull invents Stereolithography while working nights and weekends for a small tech company.

Similar to SLS, but with liquid instead of powder. SLA utilizes a laser that cures photopolymer liquid in a vat that reacts with the ultraviolet light. Finished objects have a transparent property.
Fused Deposition Modeling (FDM)

Scott Crump began developing Fused Deposition Modeling in 1989. He created the first working model in 1992. He is the co-Founder of Stratasys.

FDM works through EXTRUSION DEPOSIT. Essentially a very fancy hot flue gun. Most common home/small business style 3D printer.
PolyJet

2000 – Objet patents
PolyJet Technology

Works as combination between Fused Deposition Modeling and Stereolithography. Jets, and then instantly UV-cures tiny droplets of liquid photopolymer. Fine layers allow it to print precise objects. Supports printed out of different material such as a gel can be easily washed off by water.
How far have we come in the world of 3D printed wearables?
3D Printed Garments

Drape Dress by Jiri Evenhuis and Janne Kyttanen – 1999

Janne Kyttanen for Freedom of Creation - 2005
“Crystalization” Top. Iris van Herpen. 2010.

3D Printed Accessories
Shapeways – Print on Demand

pq Eyewear
Continuum Shoe

Shoes by Iris van Herpen.
3D Printing in Costume Design

Prometheus (2012) - Helmets

Costume Design by Janty Yates. Created by FB-FX.
Ender’s Game (2013) - Helmets

Costume Design by Christine Clark.

Man of Steel (2013) – Boot Sole

Costume Design by Michael Wilkinson.
Victoria Secret – Corset and Wings

Getting Started 3D Printing
3 Ways to Obtain Printable Files

- Download
- Scan
- Design

DOWNLOAD

- FREE (Creative Commons License)
 - Thingiverse.com
 - 123Dapp.com
 - CubeHero.com

- PAID
 - MakerBot Digital Store
 - CreateThis.com
SCAN

• Bed Scanners

• Hand-held Scanners

• Digital Camera/Photo Stitching Software

DESIGN

• FREE PROGRAMS
 – TinkerCad
 – Sculptris
 – 123D Design
 – MeshMixer
 – Sketch-Up

• PAID PROGRAMS
 – Solidwork
 – Maya
 – Zbrush
 – Rhino
Sculptris

Start with digital “ball of clay.”

Sculptris

Use tools to push and pull the “clay.” Great for creating organic shapes.
123D Design

You can also work flat with provided shapes or create your own outlines before pulling on these sketches to make 3D objects.
Meshmixer

Combines many of the features of Sculptris and 123D Design, but provides more complex tools.

In addition to geometric primitives, you are provided complex animal and human body parts.
Meshmixer

Tools allow you to “drill” holes in objects. (Perfect for sewing and jewelry applications.)

You can also do “plane cuts” of an object, among many other user friendly tools.

3D Printing Process
Examples from the University Level
Into The Woods - Baylor University

Costume design by Joe Kucharski

Sculpted bean in Sculptris.

“Drilled” sewing holes in Meshmixer.
Sculpted mushrooms in Sculptris.

“Drilled” sewing holes in Meshmixer.
New Project – In Process

Digital scan of Renaissance lace.

Photoshop - invert colors.

Photoshop - create a row.
Illustrator - trace, object envelope distort into an arch, and expand. Saved as .SVG file.

Photoshop - 3D extrusion of path.
Nobody Combines Spectacle and New Technology Quite Like Disney!

Joe Kucharski, editor of TyrannyOfStyle.com, interviewed costume designer Mirena Rada about her work with 3D printing for The Disney World Resort’s Festival of Fantasy Parade.
DISNEY CREATIVE COSTUMING

We are joined by Lisa Hanusiak, Process Engineer at The Walt Disney World Resort.

MULTI-DISCIPLINE COSTUME DIGITAL DEVELOPMENT TEAMS
Team Members & Member Roles

- Each team member has an area of expertise.
- There is a huge amount of overlap between team member roles.
- All team members are involved from cradle to grave.
- Team members come from a variety of organizational units and backgrounds.
- Entire team facilitates the realization of the costume designers creative intent.
DIGITAL DEVELOPMENT OF COSTUME ELEMENTS
Process Stages, Outputs and Owners

- Rapid Prototyping is one element of the digital costume development process.
- The RP technology can touch multiple phases of costume development (development, prototype, production, etc.).

USES OF RAPID PROTOTYPING (RP) TECHNOLOGIES FOR COSTUMING
RP PROTOTYPES

RP prototypes are a great way to try out concepts before building molds
• Scale – Is the size correct for the overall costume?
• Fit - How does it fit the performer and how is it adapted to the costume?
• Finishing - Do the aesthetics and finishes look as intended?
• Functionality – Is the costume element functional for its intended use?
• RP Shell made of Accura Clear Vue SLA
• RP prototype crown made of Accura 25 SLA

Costume Designer – Mirena Rada, Digital Sculptor – Robert King
RP MODELS FOR HIGHLAND DANCER

- Festival of Fantasy Highland Dancer
- Male pins
- Female disks
- Female head bands
- All RP models made of Objet Vero White
- Production pieces cast out of urethane

Costume Design
Costume Designer – Mirena Rada, Digital Sculptor – Heidi Fleming

Cast silicone mold
Casting the production pieces
Finished pieces
In Parade
RP MODELS FOR MADAME LEOTA CAMEO

Haunted Mansion merchandise location costume

- Face – Scanned from tombstone at Haunted Mansion attraction
- Base & Border Sculpted in Z-Brush
- All RP models made of Objet Vero White
- Base cast of metal
- Oval & face cast out of pigmented urethane

Digitally sculpted cameo

Sculpted elements were individual RP pieces to be cast separately

RP model sent for casting production molds

Finished cameo

On-operative costume

Costume Designer – Donna Bailey, Digital Sculptor – Heidi Fleming
ADDITIVE MANUFACTURING OF THE RAVEN MASK

- Festival of Fantasy parade Raven mask
- Carbon fiber filled nylon ALM 601-CF SLS
- Finished with Modern Masters Shimmer series of paint.
- AM raven masks have been in parade for over a year.

Costume Designer – Mirena Rada, Digital Sculptor – Robert King
ADDITIVE MANUFACTURING OF DWARF PICK AXE TOOLING

- Animatronic dwarf pick axe mold
- Accura 25 SLA mold reinforced with fiberglass
- Used for composite layup of the pick axe

Digital 3-Piece Mold Design

De-molding a pick axe from RP mold

Pick axe in attraction

Painted & finished pick axe

Raw pick axe, rigid carbon fiber middle, soft urethane tips

Mechanical Engineer – Mike McCormick

How to select the right material and technology?

- What is its intended use, i.e. prototype tooling, mold model or an end use item?
- What is the use environment, i.e. heat, stress, shop production, etc.?
- Is high resolution required, i.e. for high detail jewelry, accessories, etc.?
- What material properties are important, i.e. strength, stiffness, impact, wear, flexibility, heat tolerance, UV resistant, etc.?
- Is the color important?
- Is weight important?

My office wall of RP material samples
SELECTIVE LASER SINTERING (SLS)

- Fibers & Particulates Can Be Mixed In
- Higher Cost
- Highest Performance
- Rigid to Flexible Available
- Highest Temperature
- Most Durable
- Can Take a Dye
- Lower Resolution than SLA
- Most industrial RP process
- Powders can be explosive in air

STEREOLITHOGRAPHY (SLA/POLYJET)

- UV Cure
- Highest Resolution (Objet Polyjet)
- Multi-Durometer Builds
- Lower Cost (SLA)
- Largest Builds Available
- Some Flexible (Objet Polyjet)
- Multi-durometer printing (Objet Polyjet)
- Color Printing
- Clear
- Tend to be more brittle
- Liquid resins to be stored and disposed of
FUSED DEPOSITION MODELING (FDM)

- Most accessible to users
- One of the least expensive
- Good properties in wire direction
- Lowest resolution
- Need to fuse wires for durability
- Resolution improving

ABS
- Inexpensive
- Best Surface Quality
- Comes Opaque, Clear & In Colors
- Solvent Smooothable & Paintable
- Prototypes & Templates

SOLUBLE SUPPORT MATERIAL
- M3O
- Dissolvable
- One Time Use Tool
- Complex Shaped Parts

Stereolabile
- PPSF, PPSU, PC-ISO
- Higher Strength
- Sterilizable
- Biomedical Applications

High Performance
- Ultem
- Highest Strength
- High Temperature
- Paintable
- Vacuum Forming Tooling

Engineered Plastics
- PC, High Impact, Strength
- ABS-ESD7, Static Dissipative
- Nylon 12, Toughness
- ABS, UV Resistant
- Engineered Prototypes
- Production Fixtures & Drill Templates
- Durable Prototypes

SELECTIVE LASER SINTERING (SLS) FINISHING PROCESS

SLS surface finish tends to be porous and rough, but surface quality is improving

Bead Blast
- Upon removal from powder cake, the part is given a bead blast to remove any excess powder clinging to the part.

Apply Sealer
- The SLS materials are slightly porous, so a sealer is typically applied to densify the material.

Sand Smooth
- After sealing, the surface tends to be a bit rough, so if cosmetic appearance is important the surface can be smoothed with sandpaper if this is a structural part, then no further finishing is necessary.

Apply Primer
- If requiring a painted finish, the part will be primed with a two part epoxy primer.

Apply Paint
- If cosmetic appearance is important, sand with a fine grit sandpaper and then apply a paint.

Clear Coat
- To achieve the desired sheen and to protect the paint finish, apply a clear coat.
STEREOLITHOGRAPHY (SLA/POLYJET) FINISHING PROCESS

SLA & Polyjet surface finishes are high resolution with the Polyjet and Envisiontec having the highest resolution.

- Remove Support
 - Upon removal from the build chamber, break away most of the support material.
 - If support remains, use support dissolving solution bath.

- Seal Part
 - If using ABS material, the part can be solvent smoothed and sealed with acetone.
 - Solvent smoothing and sealing can be done in a solvent vapor chamber, but this tends to treat details indiscriminately.
 - If building with Ultem or solvent resistant material, seal with epoxy.

- Sand Smooth
 - After sealing, sand the part smooth with sandpaper.

- Apply Primer
 - If requiring a painted finish, the part will be primed with a two-part epoxy primer.

- Apply Paint
 - If cosmetic appearance is important, sand with a fine grit sandpaper and then apply a paint.

- Apply Clear Coat
 - To achieve the desired sheen and to protect the paint finish, apply a clear coat.

FUSED DEPOSITION MODELING (FDM) FINISHING PROCESS

- FDM surface finish tends to appear as wires in layers, but surface quality is improving.
- In order to have much strength in the direction across the wires, they must be fused.

- Remove Support
 - After removal of support material, sand smooth with fine grit sandpaper.

- Apply Primer
 - If this is to be a painted part, apply a two-part epoxy primer. If model for a mold, use a high gloss two-part epoxy primer compatible with the mold resin.
 - If this is to be a painted part, apply a two-part epoxy primer.

- Sand Smooth
 - If this is a cosmetic part, sand with fine grit sandpaper and then apply a decorative paint.

- Apply Clear Coat
 - For finished part, to achieve the desired sheen and to protect the paint finish, apply a clear coat.
SUMMARY

- RP (or Additive Manufacturing AM) works well in conjunction with other digital technologies, i.e. scanning, sculpting, pattern making and engineering.
- I have many partners in the digital process (i.e. sculptors, rendering artists, engineers, mold makers, finishing artists, etc.) that help make this process work successfully.
- A huge variety of the RP technologies and materials can be very useful to the costume development process.
- Using only one technology and one material would be analogous to telling a mechanic they could only use one tool from their tool box, or an artist that they could only use one color from their color palette.
- Not all RP technologies are represented here, but only the ones we most frequently use in costuming.
- Each costume element is unique is developed in a unique way.
- Each costume application lends itself to a particular RP material & technology.
- We have developed processes that work well for us, but explore how this technology works best for your process.
- There are hundreds of RP materials coming on the market and while sometimes overwhelming, it can also be a Wonderland of possibilities.